2023年全國成人高考數(shù)學(xué)(理科)真題試卷及答案
成人高考,作為一項國家級的大型考試,承載著無數(shù)考生的夢想和期望。經(jīng)過一上午努力奮斗,2023年10月份成人高考數(shù)學(xué)科目已經(jīng)考完,下面小編為大家整理了2023年成人高考政治真題及參考答案,這些都是由考生回憶整理的,僅供參考!
2023 年成人高等學(xué)校招生全國統(tǒng)一考試高起專
數(shù)學(xué)(理)
成考數(shù)學(xué)公式總結(jié)
(1)拋物線
y = ax^2 + bx + c (a≠0)
就是y等于a乘以x 的平方加上 b乘以x再加上 c
置于平面直角坐標(biāo)系中
a > 0時開口向上
a < 0時開口向下
(a=0時為一元一次函數(shù))
c>0時函數(shù)圖像與y軸正方向相交
c< 0時函數(shù)圖像與y軸負(fù)方向相交
c = 0時拋物線經(jīng)過原點
b = 0時拋物線對稱軸為y軸
(當(dāng)然a=0且b≠0時該函數(shù)為一次函數(shù))
還有頂點公式y(tǒng) = a(x+h)__ 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))
就是y等于a乘以(x+h)的平方+k
-h是頂點坐標(biāo)的x
k是頂點坐標(biāo)的y
一般用于求最大值與最小值和對稱軸。
拋物線標(biāo)準(zhǔn)方程:y^2=2px
它表示拋物線的焦點在x的正半軸上,焦點坐標(biāo)為(p/2,0) 準(zhǔn)線方程為x=-p/2
由于拋物線的焦點可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py
(2)圓
球體積=(4/3)π(r^3)
面積=π(r^2)
周長=2πr =πd
圓的標(biāo)準(zhǔn)方程 (x-a)^2+(y-b)^2=r^2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D^2+E^2-4F>0
(一)橢圓周長計算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。
(二)橢圓面積計算公式
橢圓面積公式: S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。
以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。
橢球物體 體積計算公式橢圓 的 長半徑__短半徑__π__高。
(3)三角函數(shù)
和差角公式
sin(A+B)=sinAcosB+cosAsinB ;sin(A-B)=sinAcosB - sinBcosA ;
cos(A+B)=cosAcosB - sinAsinB ;cos(A-B)=cosAcosB + sinAsinB ;
tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB) ;
cot(A+B)=(cosAcotB-1)/(cosB+cotA) ;cot(A-B)=(cosAcotB+1)/(cosB-cotA) ;
倍角公式
tan2A=2tanA/(1-tan^2A) ;cot2A=(cot^2A-1)/2cota ;
cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a ;
sin2A=2sinAcosA=2/(tanA+cotA);
另:sinα+sin(α+2π/n)+sin(α+2π__2/n)+sin(α+2π__3/n)+……+sin[α+2π__(n-1)/n]=0 ;
cosα+cos(α+2π/n)+cos(α+2π__2/n)+cos(α+2π__3/n)+……+cos[α+2π__(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 ;
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0;
四倍角公式
sin4A=-4__(cosA__sinA__(2__sinA^2-1))
cos4A=1+(-8__cosA^2+8__cosA^4)
tan4A=(4__tanA-4__tanA^3)/(1-6__tanA^2+tanA^4)
五倍角公式
sin5A=16sinA^5-20sinA^3+5sinA
cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA__(5-10__tanA^2+tanA^4)/(1-10__tanA^2+5__tanA^4)
六倍角公式
sin6A=2__(cosA__sinA)__(2__sinA+1)__(2__sinA-1)__(-3+4__sinA^2))
cos6A=((-1+2__cosA^2)__(16__cosA^4-16__cosA^2+1))
tan6A=(-6__tanA+20__tanA^3-6__tanA^5)/(-1+15__tanA^2-15__tanA^4+tanA^6)
七倍角公式
sin7A=-(sinA__(56__sinA^2-112__sinA^4-7+64__sinA^6))
cos7A=(cosA__(56__cosA^2-112__cosA^4+64__cosA^6-7))
tan7A=tanA__(-7+35__tanA^2-21__tanA^4+tanA^6)/(-1+21__tanA^2-35__tanA^4+7__tanA^6)
八倍角公式
sin8A=-8__(cosA__sinA__(2__sinA^2-1)__(-8__sinA^2+8__sinA^4+1))
cos8A=1+(160__cosA^4-256__cosA^6+128__cosA^8-32__cosA^2)
tan8A=-8__tanA__(-1+7__tanA^2-7__tanA^4+tanA^6)/(1-28__tanA^2+70__tanA^4-28__tanA^6+tanA^8)
九倍角公式
sin9A=(sinA__(-3+4__sinA^2)__(64__sinA^6-96__sinA^4+36__sinA^2-3))
cos9A=(cosA__(-3+4__cosA^2)__(64__cosA^6-96__cosA^4+36__cosA^2-3))
tan9A=tanA__(9-84__tanA^2+126__tanA^4-36__tanA^6+tanA^8)/(1-36__tanA^2+126__tanA^4-84__tanA^6+9__tanA^8)
十倍角公式
sin10A=2__(cosA__sinA__(4__sinA^2+2__sinA-1)__(4__sinA^2-2__sinA-1)__(-20__sinA^2+5+16__sinA^4))
cos10A=((-1+2__cosA^2)__(256__cosA^8-512__cosA^6+304__cosA^4-48__cosA^2+1))
tan10A=-2__tanA__(5-60__tanA^2+126__tanA^4-60__tanA^6+5__tanA^8)/(-1+45__tanA^2-210__tanA^4+210__tanA^6-45__tanA^8+tanA^10)
萬能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B); 2cosAsinB=sin(A+B)-sin(A-B) ;
2cosAcosB=cos(A+B)+cos(A-B) ;-2sinAsinB=cos(A+B)-cos(A-B) ;
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 ;cosA+cosB=2cos((A+B)/2)sin((A-B)/2) ;
tanA+tanB=sin(A+B)/cosAcosB; tanA-tanB=sin(A-B)/cosAcosB ;
cotA+cotB=sin(A+B)/sinAsinB; -cotA+cotB=sin(A+B)/sinAsinB ;
降冪公式
sin2(A)=(1-cos(2A))/2=versin(2A)/2;
cos2(α)=(1+cos(2A))/2=covers(2A)/2;
tan2(α)=(1-cos(2A))/(1+cos(2A));
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b^2=a^2+c^2-2accosB 注:角B是邊a和邊c的夾角
(4)反三角函數(shù)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
(5)數(shù)列
等差數(shù)列通項公式:an=a1+(n-1)d
等差數(shù)列前n項和:Sn=[n(A1+An)]/2 =nA1+[n(n-1)d]/2
等比數(shù)列通項公式:an=a1__q^(n-1);
等比數(shù)列前n項和:Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)__q^n (n≠1)
某些數(shù)列前n項和:
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n^2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
(6)乘法與因式分解
因式分解
a^2-b^2=(a+b)(a-b)
a^2±2ab+b^2=(a±b)^2
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b)(a^2+ab+b^2)
a^3±3a^2b+3ab^2±b^3=(a±b)^3
乘法公式
把上面的因式分解公式左邊和右邊顛倒過來就是乘法公式。
(7)三角不等式
-|a|≤a≤|a|
|a|≤b<=>-b≤a≤b
|a|≤b<=>-b≤a≤b
|a|-|b|≤|a+b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a|-|b|≤|a-b|≤|a|+|b|
|z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn|
|z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn|
|z1|-|z2|-...-|zn|≤|z1±z2±...±zn|≤|z1|+|z2|+...+|zn|
成考數(shù)學(xué)70分應(yīng)該如何提分
掌握公式,數(shù)學(xué)題離不開計算,計算是有公式的,如果你不掌握公式的話,即使會做也會花費很大時間。解答題,即使不會做,寫出公式也是有分?jǐn)?shù)的。所以記憶公式,是成考數(shù)學(xué)做題的基礎(chǔ)。
強化練習(xí),平時可以看看之前成考數(shù)學(xué)考試的試題,然后試著多多練習(xí),這樣遇到不會的,就能知道自己什么地方是比較薄弱的,注意重點復(fù)習(xí)。做題才能更好總結(jié),做題多了也能了解跟更多的答題技巧,是比較好的方式。
反復(fù)檢查,認(rèn)真核對;在成考數(shù)學(xué)答題審題、析題的過程中,由于思考問題不全面,往往會導(dǎo)致“失根”、“增根”等錯誤,因而,反復(fù)地檢查,認(rèn)真地進(jìn)行核對, 也是解選擇題必不可少的步驟之一。